
USENIX Security ’25 Artifact Appendix: TapTrap: Animation-Driven
Tapjacking on Android

Philipp Beer
TU Wien

Marco Squarcina
TU Wien

Sebastian Roth
University of Bayreuth

Martina Lindorfer
TU Wien

A Artifact Appendix

A.1 Abstract

We provide multiple artifacts to reproduce the results pre-
sented in the paper and support future work building on our
findings. Specifically, we include the following artifacts:

• Dataset preparation: Scripts for crawling the Google Play
Store, downloading apps, and preparing them for analysis
(/dataset_preparation). Due to the dataset size, we can-
not publicly release the full set of apps used. Reviewers
can request access as outlined in Section A.2.3.

• Malicious app detection: Code and results for malicious
app detection (/malicious_app_detection).

• Vulnerable app detection: Code and results for vulnerable
app detection (/vulnerable_app_detection).

• User study: Materials from the user study, including the
information sheet, consent forms, questionnaires, app, and
website used during the study (/user_study).

• TapTrap PoC: Proof-of-concept of TapTrap (/poc).

• Reproducibility scripts: Scripts to reproduce the results
presented in the paper (/reproducibility).

• Supplementary files: Additional files not directly relevant
for artifact evaluation, such as assets and paper-related li-
censes (/assets and /paper_licenses)

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Excessive or rapid scraping and downloads of APKs from the
Play Store may violate the Play Store’s terms of service and
could result in temporary or permanent IP bans. The dataset
preparation pipeline uses a conservative approach to avoid
excessive downloads. We nevertheless recommend reviewers
use a dedicated machine to avoid potential issues.

Running the KillTheBugs app and the TapTrap PoC are
intended solely to demonstrate the security vulnerability de-
scribed in the paper. We do not perform destructive operations
and do not collect personal data.

A.2.2 How to access

The artifacts accompanying the paper are hosted at
https://github.com/beerphilipp/taptrap and will be archived
on Zenodo once reviewed.

A.2.3 Hardware dependencies

Access to the APKs. Due to the size of the APK dataset
used in the paper, we cannot distribute it directly. Reviewers
are granted access to it as outlined in Section A.3.1.

System Requirements. Both x86 and ARM architectures
are supported. For running an Android emulator, however, we
recommend a Mac with Apple Silicon. A minimum of 16 GB
RAM and 250 GB available disk space are suggested.

Physical Android Device. We recommend running the apps
on a physical Pixel 6a device running Android 15. While they
can be run on other devices, screen element positioning may
differ and require manual adjustment for the attack to run.
Alternatively, the app can be executed in an emulator.

A.2.4 Software dependencies

Operating System. We have tested and support Ubuntu
24.04 and macOS 15 with a desktop environment. Other sys-
tems may require adjustments.

Docker. Install Docker (see /reproducibility/README.md

for a step-by-step guide or https://docker.com/get-started for
official instructions).

Rsync. We require rsync (preinstalled on Ubuntu 24.04 and
macOS 15) to retrieve the APK dataset. We have, however,
experienced issues with it on macOS 15 and suggest installing
it via Homebrew instead (brew install rsync).

Java. To be able to use the necessary Android
dependencies, install a recent version of Java (see
https://www.java.com/en/download/manual.jsp)

1

https://github.com/beerphilipp/taptrap
https://docker.com/get-started
https://www.java.com/en/download/manual.jsp
Philipp Beer
DRAFT VERSION

Android Dependencies. Install the Android dependencies
(see /reproducibility/README.md for a step-by-step guide):

• Download and install the Android command line tools,
which include sdkmanager.

• Install the platform tools to install ADB.

• Set the ANDROID_HOME environment variable.

• Add the platform tools to $PATH.

A.2.5 Benchmarks

Evaluating the analyses pipelines requires access to the APK
dataset we used. See Section A.2.3 for access instructions.

A.3 Set-up
A.3.1 Installation

Clone the Repository. Clone the artifact repository using
git clone https://github.com/beerphilipp/taptrap.git

in a directory of your choice.

Install the Dependencies. See A.2.4 for instructions.

Obtain a Google AAS token. Downloading apps from the
Play Store requires a Google account and an AAS token. We
provide credentials for reviewers to use on HotCRP under
Artifact access1. Otherwise, create a new Google account
and refer to /dataset_preparation/downloader/README.md

to generate a token.

Download APKs. Our experiments use a subset of 500
randomly selected apps and 266 predefined apps from the
dataset. To access the dataset, save the private SSH key that
we provide for reviewers under Artifact access in HotCRP to a
file named ~/.ssh/taptrap_key and give it the correct permis-
sions with chmod 600 ~/.ssh/taptrap_key. Researchers may
request access to the APK dataset by contacting the authors.
Run the following commands in the artifact’s root directory:

• Select 500 random apps:
rsync -e "ssh -i ~/.ssh/taptrap_key" -azn \
--out-format="%n" dl@download.st1.secpriv.wien: . | \
grep -v "/$" | sort -R | head -n 500 > /tmp/apps.txt

• Add the set of predefined apps:
cat reproducibility/fixed_apps.txt >> /tmp/apps.txt

• Download the selected apps, where <DIR> refers to where
the APKs should be stored:
rsync -e "ssh -i ~/.ssh/taptrap_key" -avxz \
--files-from /tmp/apps.txt \
dl@download.st1.secpriv.wien: <DIR>

1The AAS token may expire. In this case, please contact us on HotCRP.

Start the Android Emulator or Connect a De-
vice. Connect the physical device to the host ma-
chine via USB. If you are using an emulator, run
reproducibility/start_emulator.sh in the repository’s
root directory to automatically download the correct emulator
image for your system and start it.

Set up the Android device. On physical devices, enable
USB debugging in Settings > About phone, then tap Build
number seven times to enable developer options. Go to System
> Developer options and enable USB debugging. This step is
not required for emulators.

A.3.2 Basic Test

To verify correct installation and setup, run
reproducibility/basic_test.sh <email> <token> in
the repository’s root directory. Replace <email> and <token>

with the Google credentials provided above. This command
will perform the following steps:

• Builds all required Docker images.

• Checks if the provided Google credentials are valid by
attempting to download an app.

• Checks if an Android device is connected.

The script should print OK to the console. Depending on the
device resources, this may take up to 20 minutes.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): The app downloading and preparation process from
the Play Store, as described in Section 5.1, is functional
and yields a large dataset for further analysis. This is
proven by experiment E1.

(C2): TapTrap is effective on Android 15 as described in
Section 3 of the paper. This is proven by experiment E2.

(C3): A large-scale analysis of 99,705 apps using the ani-
mation detection pipeline (cf. Section 5.2) identified 61
unique animations that bypassed the intended duration
limit of 3,000ms (Section 5.3.1) and 28 apps containing
animations with a maliciousness score of at least 50 (cf.
Section 5.3.2). This is proven by experiment E3.

(C4): 76.3% of analyzed apps are vulnerable to TapTrap
based on the static analysis pipeline provided in Section
6 and Table 3. This is proven by experiment E4.

A.4.2 Experiments

(E1): Dataset preparation [15 human-minutes + 1 compute-
hour + 20 GB disk]

2

Preparation: Follow the steps in Section A.3.1 to set
up the environment.

Execution: Run reproducibility/e1.sh <EMAIL>

<TOKEN> <OUT> in the repository and replace <EMAIL>

with the Google account email, <TOKEN> with the AAS
token, and <OUT> with the desired output directory. The
script performs a Play Store crawl and download and
prepares the APKs for analysis. Due to time constraints,
the crawl stops after 25,000 package names, and only a
random subset of 50 apps is attempted for download.

Results: The script should output OK.
Alternatively, manually verify that:
• <OUT>/apps.csv contains ≥ 15,000 package names

(lower bound after crawling 25,000 package names)
• <OUT>/apps contains ≥ 30 apps (lower bound after

downloading 50 apps)
• Note that lower bounds are due to regional restrictions

and possible device limitations.

(E2): TapTrap functionality [30 human-minutes + 10
compute-minutes + 10 GB disk]

Preparation: Follow the steps in Section A.3.1 to set up
the environment, then run reproducibility/e2.sh from
the repository root to install and launch the app. Note that
running an emulator on x86 with nested virtualization is
extremely slow and may cause the attack to fail.

Execution: Click the “Start” button in the app to initi-
ate the attack, then click “Click here”. The app secretly
opens a camera permission prompt and attempts to trick
the user into granting access.

Results: The app should display “Permission granted”
without the user being aware of granting the permission.
Alternatively, manually verify that camera access has
been granted to the app: long-press the app icon, select
“App info”, then “Permissions”.

(E3): Detection of potentially malicious animations [15
human-minutes + 45 compute-minutes + 200 GB disk]:

Preparation: Follow the steps in Section A.3.1 to set
up the environment, including downloading the APKs.

Execution: Run reproducibility/e3.sh <APK_DIR>

<OUT_DIR> in the repository root, where <APK_DIR> is
the input directory containing the APKs and <OUT_DIR>

is the output directory for results. The script analyzes

a random subset of 500 apps, plus a fixed subset of
apps that span the 61 animations exceeding 3,000 ms in
duration and those that have a score of at least 50.

Results: The script should output OK.
Alternatively, manually verify that the generated report
at <OUT_DIR>/report.tex states:
• maltapNumberUniqueAnimationsExtendedDuration:

61 unique animations exceeding the 3,000 ms
duration threshold were found (cf. Section 5.3.1).

• maltapNumberAppsAnimationsScoreMin: 28 apps con-
taining at least one animation with a maliciousness
score of at least 50 were found (cf. Section 5.3.2).

(E4): Detection of vulnerable apps [20 human-minutes + 4
compute-hour + 200 GB disk]

Preparation: Follow the steps in Section A.3.1 to set
up the environment, including downloading the APKs.

Execution: Run reproducibility/e4.sh <APK_DIR>

<OUT_DIR>, where <APK_DIR> is the directory containing
the APKs and <OUT_DIR> is the output directory for
results. The script executes the vulnerable app detection
pipeline on the app dataset.

Results: The script should output OK.
Alternatively, manually verify that 76.3% ±5%
of analyzed apps are vulnerable by inspect-
ing the vulntapAmountAppsMinOneActivity

VulnerablePercent macro in the generated report
located at (<OUT_DIR>/report.tex).

A.5 Notes on Reusability
To foster future research and make it easier for other to
build on our work, we provide detailed documentation in
the README.md files included in each subdirectory. These files
include troubleshooting information, describe how to adjust
the analysis pipeline (e.g., changing the level of parallelism),
explain the code organization and module structure, and out-
line usage outside Docker environments.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

3

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

